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The present paper discusses the dispersion equation for SH waves in a non-homogeneous monoclinic layer 
over a semi infinite isotropic medium. The wave velocity equation has been obtained. In the isotropic case, when 
non-homogeneity is absent, the dispersion equation reduces to the standard SH wave equation. The dispersion 
curves are depicted by means of graphs for different values of non-homogeneity parameters for the layer and 
semi-infinite medium.  
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1. Introduction 
 
 The formulations and solutions of many problems of linear wave-propagation for homogeneous 
media are available in the literature of continuum mechanics of solids. In recent years, however, considerable 
interest has arisen in the problem connected with bodies whose mechanical properties are functions of space, 
i.e. non-homogeneous bodies. This interest is mainly due to the advent of solid rocket propellants, polymeric 
materials and growing demand of engineering and industrial applications. 
 The propagation of surface waves in elastic media is of considerable importance in earth-quake 
engineering and seismology on account of the occurrence of stratification in the earth crust, as the earth is 
made up of different layers. As a result, the theory of surface waves was developed by Stoneley [1], Bullen 
[2], Ewing et al. [3], Hunters [4] and Jeffreys [5]. 
 Many results of theoretical and experimental studies revealed that the real earth is considerably more 
complicated than the models presented earlier. This has led to a need for more realistic representation as a 
medium through which seismic waves propagate. The wave propagation in crystalline media plays a very 
interesting role in geophysics and also in ultrasonic and signal processing. A monoclinic medium is an 
example of such medium, keeping in mind the fact that the non-homogeneity characteristic is one of the most 
generalized elastic conditions inside the earth. Many authors have studied the propagation of different waves 
in different media with non-homogeneity. 
 Sezawa [6] studied the dispersion of elastic waves propagated on curved surfaces. The transmission 
of elastic waves through a stratified solid medium was studied by Thomson [7]. Haskell [8] studied the 
dispersion of surface waves in multilayered media. Biot [9] studied the influence of gravity on Rayleigh 
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waves, assuming the force of gravity to create a type of initial stress of hydrostatic nature and the medium to 
be incompressible. 
 Propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched between two 
semi infinite isotropic media was studied earlier by Sinha [10]. Wave propagation in a thin two-layered 
laminated medium with couple under initial stress was studied by Roy [11]. Datta [12] studied the effect of 
gravity on Rayleigh wave propagation in a homogeneous, isotropic elastic solid medium. Effects of 
irregularities on the propagation of guided SH waves were studied by Chattopadhyay et al. [13]. Goda [14] 
studied the effect of non-homogeneity and anisotropy on Stoneley waves. Gupta et al. [15] investigated the 
influence of linearly varying density and rigidity on torsional surface waves in a non-homogeneous crustal 
layer.  
 Some of the recent notable works on the propagation of seismic waves in various media with 
different geometries were written by Chattopadhyay et al. [16-18].  
 Recently Sethi and Gupta [19] investigated the surface waves in homogeneous viscoelastic media of 
higher order under the influence of surface stresses. 
 In the present problem, we have considered the propagation of SH wave in a regular monoclinic 
crustal layer over an isotropic semi-infinite medium. The dispersion relation is found in the closed form and 
matched with the classical Love wave equation as a particular case. The dispersion curves are depicted by 
means of graphs for different values of non-homogeneity parameters. The influence of non-homogeneity 
parameters, wave number and the thickness of the layer on the dimensionless phase velocity has been 
studied. 
 
2. Formulation of the problem 
 

 
 

Fig1. Geometry of the problem. 
 

 Let us consider ρi, ui (i =1, 2) as the densities and displacements in a monoclinic layer (of thickness 
H) and a semi-infinite isotropic medium, respectively. 
 Assuming the z-axis along the interface of the layer and semi-infinite medium, the y-axis is taken 
vertically downwards. 
 First, we will deduce the equation of motion for propagation of SH wave in a monoclinic layer, 
 For a monoclinic layer, we have the following strain-displacement relation  

y=–H

O

y

z

Non-homogeneous
mono-clinic layer

Isotropic Semi-infinite
medium
 = (1–sin y) and
 = (1–sin y)
  
  

2

2



Propagation of SH waves in an regular non homogeneous … 449 
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S S S S S S
x y z y z z x x y

        
        
        

  (2.1) 

 
where u, v, w are displacements along the x, y, z axis respectively and Si (i=1, 2, ......,6) are strain 
components. 
 The stress-strain relations for a rotated y-cut quartz plate, which exhibits monoclinic symmetry with 
x being the diagonal axis, are 
 
  1 11 1 12 2 13 3 14 4T C S C S C S C S    , 
 
  2 12 1 22 2 13 3 14 4T C S C S C S C S    , 
 
  3 13 1 23 2 33 3 34 4T C S C S C S C S    , 
         (2.2) 
  4 14 1 24 2 34 3 44 4T C S C S C S C S    , 
 
  5 55 5 56 6T C S C S  , 
 
  6 56 5 66 6T C S C S   
 
where Ti (i= 1, 2, ......, 6) are stress components and Cij= Cji (i, j = 1, 2, ........, 6) are medium (elastic) 
constants. 
 The equation of motion in the absence of body forces are 
 

  
2

6 51
2

T TT u

x y z t

  
   

   
, 

 

  
2

6 42
2

T TT v

x y z t

  
   

   
,         (2.3) 

 
and 
 

  
2

5 4 3
2

T T T w

x y z t

   
   

   
  

 
where ρ is the density of the upper monoclinic layer.  
 For SH waves propagating in the z-direction with the displacement only in the x-direction, we have 
 
   , , , , .u u y z t v 0 w 0            (2.4) 

 
 Using Eqs (2.1) and (2.4), we get 
 

  , , , , ,1 2 3 4 5 6
u u

S 0 S 0 S 0 S 0 S S
z y

 
     

 
.        (2.5) 
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 With the help of Eqs (2.5) Eqs (2.2) gives 
 

  , and1 2 3 4 5 55 56 6 56 66
u u u u

T T T T 0 T C C T C C
z y z y

   
       

   
.       (2.6) 

 
3. Solution for monoclinic layer 
 
 Let the non-homogeneities for the monoclinic layer be considered as 
 

  , , ,my my my my
66 66 56 56 55 55 1C C e C C e C C e e         .         (3.1) 

 
 Using Eqs (2.4), (2.6) and (3.1) in Eq.(2.3), we obtain the non-vanishing equation of motion as 
 

  
2 2 2 2

1 1 1 1 1 1
66 56 55 56 66 12 2 2

u u u u u u
C 2C C mC mC

y z z yy z t

              
     

.        (3.2) 

 
 We can assume that the solution of Eq.(3.2) is 
 

       , , iK z ct
1 1u y z t U y e           (3.3) 

 
where K is the wave number and c is the velocity of SH wave. 
 

  
 2 22 55 56 1561 1

12
66 66

C k ikmCCd U dU
2iK m U 0

C dy Cdy

                   

.      (3.4) 

 

 By introducing   1a y 2
1U V y e  where 56

1
66

C
a 2iK m

C

 
   

 in Eq.(3.4), we have  

 

  
2 22

255 561 1
2

66 66 66

C Cad V
K iKm V 0

4 C C Cdy

    
         

.      (3.5) 

 
 The solution of Eq.(3.5) can be taken as 
 
     cos sinV y A Ty B Ty    
 

where  
 

  
22 2

2 2 56 55
2 2

66 66 1

C Cm c
T K

C C4K

             
  

 

where 
 

  2 66
1

1

C
 


. 
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 Thus solution of the layer becomes 
 

       , , cos sin 1 i Kz ta y 2
1u y z t A Ty B Ty e e   .       (3.6) 

 
4. Solution for semi infinite half space   
 
 For Love wave propagation, we have 
 
  u w 0        and        v v y, z, t .      (4.1) 
 
 The equations governing the propagation of Love wave in a homogeneous isotropic elastic medium 
in the absence of body forces are 
 

  
2

xx yx zx 2

u

x y z t

   
      

   
, 

 

  
2

xy yy zy 2

v

x y z t

   
      

   
,                               (4.2) 

 

  
2

xz yz zz 2

w

x y z t

   
      

   
. 

 
 Also, Hooke’s law for isotropic medium, 
 
  ij ij ij2             (4.3) 

 
where λ, µ are Lame’s constants and Δ is the dilatation. 
 

Also  ji
ij

j i

uu1

2 x x

 
   

   
.       (4.4) 

 
 In view of Eqs (2.4), (4.3) and (4.4), the equation of motion (4.2) gives the non-vanishing equations 
of motion for propagation of SH wave in the lower semi-infinite medium as  
 

  
2

2 2 2u u u

y y z z t

                   
.      (4.5) 

 
 For wave propogating in the z-direction 
 

     i kz wt
2u W y e  ,      (4.6) 

 
Eq.(4.5) reduces to 
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2 2

2
2

d W 1 d dW c
K 1 W 0

dy dydy

  
       

.      (4.7) 

 

 Introducing 1w
W 


 in Eq.(4.7), to eliminate 

dW

dy
, we get 

 

  
22 2 2

21
1 1 12 2 2

d W 1 d 1 d c
W W k 1 W 0

2 dydy dy 4

    
             

.      (4.8) 

 
 We take variations in rigidity and density as  
 
     sin ; sin ,2 21 y 1 y 0            .      (4.9) 

 
 Introducing Eqs (4.9) in Eq.(4.8), we get 
 

   ;
2

21
1 12

d W
T W 0

dy
    

         (4.10)  

where   ,
2 2

2 2 2
1 22 2

22

c
T K 1

4K

  
        

. 

 
 Thus the solution for Eqs (4.10) can be taken as 
 

  1 1T y T y
1W e e  . 

 
 Thus the displacement component for a non-homogenous half space is given by 
 

   
 

 , ,
sin

1T y
i Kz wt

2 1 2

Ce
u y z t e

1 y




 
.      (4.11) 

 
5. Boundary conditions 
 
 The boundary conditions are as follows: 
 
(i) The upper monoclinic layer is stress free, i.e., T6=0, at y=-H 
 

  1 1
56 66

u u
C C 0

z y

 
 

 
     at     y=-H.      (5.1) 

 
(ii) The stresses are continuous at a common interface 
 

  1 1 2
56 66 2

u u u
C C

z y y

  
  

  
     at     y=0.      (5.2) 
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(iii) The displacements are continuous at a common interface 
     

 u1=u2           at              y=0.       (5.3) 
 
 Using all the boundary conditions (5.1), (5.2), (5.3) and after simplification, we have 
 

 sin cos sin cos1 1
66 56 66 56 66 66

a a
A C T TH C ik C TH B ikC C TH C T TH 0

2 2

                             
  (5.4) 

 

  1
56 66 66 2 1

a
A C ik C BC T T C

2 2

              
,      (5.5) 

 
  A = C.      (5.6) 
 
 Eliminating A, B, C from Eqs (5.4), (5.5) and (5.6), we get 
 

 Det (Dij) = 0,     where     i, j = 1, 2, 3          (5.7) 
 
where 
 

   sin cos11 66 56
m

D C T TH C TH
2

   ;     sin cos ;12 56 66 13
m

D C TH C T TH D 0
2

    , 

 

   ; ;21 56 22 66 23 1 2
m

D C D C T D T
2 2

        
 

; 

 
   ; ;31 32 33D 1 D 0 D 1     . 
 
 After simplification of Eq.(5.7), we have 
 

   tan 1

2

A
TH

A
        (5.8) 

 
where 
 

   2
1 1

66

A T T
2 C

     
, 

 

   
2

2 2
2 1

66

m m
A T T

4 2 2 C

       
. 

 
 After substituting the values of T and T1 in Eq.(5.8), we get 
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   tan
22 2

56 55 1
2

66 66 21

C C Am c
KH

2k C C A

                       

        (5.9) 

where 

  
22 22 2

56 552
1 2 2

66 66 662 1

C Cc m c
A 1

C 2K 2K 2K C C

                                     
, 

 

  
2 22 2

56 55 2
2 2 2

66 66 661 2

C C c m c
A 1

C C C 2K 2K 2K

                           
, 

  
which gives the dispersion relation for propagation of SH waves in a non-homogeneous monoclinic layer 
lying over an isotropic non-homogeneous semi-infinite medium. 
 
6. Particular cases 
 
 Case (I): When C’

66 = C’
55=µ1, C

’
56 =0, Eq.(5.9) reduces to, 

 

   tan
2

3
2

41

Ac
KH 1

A

 
   
  

        (6.1) 

where 

   
22

2
3 2

1 2

c
A 1

2K 2K

               
, 

 

   
2

4 2
1

c
A 1  


,  

     
which gives the wave velocity equation for propagation of SH waves in a non-homogeneous isotropic layer 
lying over an isotropic non-homogeneous semi-infinite medium. 
 
Case (II): When m=0, C’

66 = C’
55=µ1, C

’
56 =0, Eq.(5.9) reduces to 

 

   tan
2

5
2

61

Ac
KH 1

A

 
  
  

                           (6.2) 

where 

   
22

2
5 2

1 2

c
A 1

2K 2K

               
, 

   
2

6 2
1

c
A 1 


, 
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which gives the dispersion relation for propagation of SH waves in a homogeneous isotropic layer lying over 
a non-homogeneous isotropic semi-infinite medium.  
 
Case (III): When m=0, α=0, C’

66 = C’
55=µ1, C

’
56 =0, Eq.(5.9) reduces to 

 

   tan
2

7
2

81

Ac
KH 1

A

 
  
  

                           (6.3) 

where 

   
2

2
7 2

1 2

c
A 1

    
   

, 

 

   
2

8 2
1

c
A 1 


, 

 
which is the dispersion relation for propagation of SH waves in a homogeneous isotropic layer lying over a 
homogeneous isotropic semi-infinite medium, which is in complete agreement with the classical Love wave 
equation.   
 
Case (IV): When m=0, Eq.(5.9) reduces to 
 

   tan
22

56 55 9
2

66 66 101

C C Ac
KH

C C A

            

       (6.4) 

where 

   
22

2
9 2

66 2

c
A 1

C 2K 2K

              
, 

 

   
2 2

56 55
10 2

66 66 1

C C c
A

C C

            
, 

 
which gives the dispersion relation for propagation of SH waves in a homogeneous monoclinic layer lying 
over a non-homogeneous isotropic semi-infinite medium. 
 
Case (V): When m=0, α =0 Eq.(5.9) reduces to 
 

   tan
22

56 55 11
2

66 66 121

C C Ac
KH

C C A

            

         (6.5) 

where 

   
2

2
11 2

66 2

c
A 1

C

    
   

, 
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2 2

56 55
12 2

66 66 1

C C c
A

C C

            
, 

 
which gives the dispersion relation for propagation of SH waves in a homogeneous monoclinic layer lying 
over an isotropic homogeneous semi-infinite medium, which is in complete in agreement with the 
corresponding classical result given by Chattopadhyay and Pal. 
 
7. Numerical computations and discussion 
 
 To study the effect of various dispersion non-homogeneities on the propagation of SH wave 
propagating in non-homogeneous mono-clinic layer lying over a non-homogeneous semi-infinite media, 
phase velocity is calculated numerically with the help of MATLAB for Eq.(5.9). We take the following data: 
for a mono-clinic layer (Tiersten [22]) 
 

  ,9 2 9 2
55 56C 94 10 N m C 11 10 N m      , 

 

  ,9 2 3
66 1C 93 10 N m 7450 Kg m     . 

 
for a semi-infinite medium (Gubbins [21]) 
 

  . ,10 2 3
2 26 54 10 N m 3409 Kg m     . 

 
 The effect of exponentially varying elastic parameters and density on SH waves in a non-
homogeneous monoclinic crustal layer over a non-homogeneous half space is discussed in the following way 
by means of graphs. 
 

 
 

Fig.2.  Variation of dimensionless phase velocity (c/β1)
2 against dimensionless wave number KH 

demonstrating the influence of non-homogeneity associated with mono-clinic crustal layer. 
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Fig.3.  Variation of dimensionless phase velocity (c/β1)
2 against dimensionless wave number KH 

demonstrating the influence of non-homogeneity associated with half-space. 
 
 Figure 2 shows the effect of non-homogeneity parameter m/2K involved in the rigidity of the 
monoclinic crustal layer when a non-homogeneous half space (i.e., rigidity and density varying 
trigonometrically with depth) is taken into consideration. The following observations are mode and effects 
obtained under the above considered values. 
(1a)  For a particular dimensionless wave number KH and a fixed value of non-homogeneity of the half 

space i.e., α/K= 0.2, the dimensionless phase velocity (c/β1)
2 of SH waves increases as the value of 

m/2K increases from 0.1 to 0.5. 
(1b)  For various values of m/2K and a fixed value of α /K, the phase velocity (c/β1)

2 increases as the wave 
number decreases in all curves 1-3. 

(1c)  Curve 1(for m/2K=0.5) is steeper than curve 2 (for m/2K=0.3), which in turn is steeper than curve 
3(for m/2K=0.1), which reveals that the dimensionless non-homogeneity factor m/2K has a prominent 
effect on SH wave propagation. 

(1d)  All the three curves are coinciding as the wave number approaches 0.1. 
 Figure 3 shows the effect of non-homogeneity parameter α/K involved in the rigidity and density of 
the non-homogeneous half space where a non-homogeneous monoclinic crustal layer lying over it whose 
(i.e., elastic parameters and density vary exponentially with depth) is taken into consideration. The following 
observations are mode and effects obtained under the above considered values. 
(2a)  For a particular dimensionless wave number KH and a fixed value of non-homogeneity of the layer 

i.e., m/2K= 0.1, the dimensionless phase velocity (c/β1)
2 of SH waves decreases as the value of α/K 

increases from 0.2 to 0.6. 
(2b)  For various values of α/K and a fixed value of m/2K, the phase velocity increases as the wave number 

decreases in all curves 1-3. 
(2c)  Curve 1(for α/K=0.6) is steeper than curve 2 (for α/K=0.4), which in turn is steeper than curve 3(for 

α/K=0.2), which reveals that the dimensionless non-homogeneity factor α/K has a prominent effect on 
SH wave propagation. 

 
8. Conclusions 
 

Here, we studied the propagation of the SH waves in a non-homogeneous mono-clinic crustal layer 
lying over a non-homogeneous semi-infinite media. A closed form solutions were derived separately for the 
displacements in monoclinic layer and half-space. By using the asymptotic expansion of Whittaker’s 
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function we derived the wave velocity equation for the SH waves in compact form. Dimensionless phase 
velocity is calculated numerically with the help of MATLAB. The effect of various dimensionless elastic 
parameters and non-homogeneity factors on the dimensionless phase velocity (c/β1)

2 have been shown 
graphically. We make the following observations 

1. For various values of m/2K and a fixed value of α/K, the phase velocity (c/β1)
2 increases as the wave 

number decreases. 
2. For a particular dimensionless wave number KH and a fixed value of non-homogeneity of the half 

space i.e., α/K, the dimensionless phase velocity (c/β1)
2 of SH waves increases as the value of m/2K 

increases.  
3. For a particular dimensionless wave number KH and a fixed value of non-homogeneity of the layer 

i.e., m/2K, the dimensionless phase velocity (c/β1)
2 of SH waves increases as the value of α/K 

increases. 
4. In the absence of all non-homogeneities in the density and rigidity of a monoclinic layer and semi-

infinite half-space, the dispersion equation for the propagation of SH waves in a homogeneous 
monoclinic layer lying over an isotropic homogeneous semi-infinite medium is in complete 
agreement with the classical dispersion equation of Chattopadhyay and Pal. 

5. In the absence of all non-homogeneities in the density and rigidity and C’
66 = C’

55=µ1, C
’
56 =0, the 

dispersion equation for the propagation of SH waves in an isotropic homogeneous layer lying over 
an isotropic homogeneous semi-infinite medium is in complete agreement with the classical 
dispersion equation of Love wave.   

 The wave propagation in crystalline media (monoclinic media) plays a very interesting role in 
geophysics and also in ultrasonic and signal processing. This study is helpful in understanding the cause and 
estimating of damage due to earthquakes. The present paper may be useful in predicting the behavior of SH 
waves in non-homogeneous crystalline geo-media. 
 
Nomenclature 
 
 , , , ......,ijC i j 1 2 6  – elastic constants 

 c – velocity of SH waves 
 H – thickness of the layer   
 K – wave number 
 m – non-homogeneity parameter in the monoclinic layer 
 , toiS i 1 6  – strain components 

 , toiT i 1 6  – stress components 

   – non-homogeneity in the semi-infinite medium 
 ∆ – dilatation 
 λ, µ – Lame’s constants 
 , toi i 1 2   – densities of the monoclinic layer and semi-infinite medium 
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